If it's not what You are looking for type in the equation solver your own equation and let us solve it.
100+20t-3t^2=0
a = -3; b = 20; c = +100;
Δ = b2-4ac
Δ = 202-4·(-3)·100
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-40}{2*-3}=\frac{-60}{-6} =+10 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+40}{2*-3}=\frac{20}{-6} =-3+1/3 $
| 5x-6x=6 | | 168=-6(7r-7) | | 9w-28+6w-5=5w | | 14b^2+34=0 | | -5(7x-8)+4x=-84 | | 88=4(3x-2) | | (2x-5)-(x+1)=20 | | -7y-18=-81 | | 9w-28+5w+6w-5=180 | | -171=-8(7+3x)+5 | | 4/3=a+1/3 | | 9w-28+5w=6w-5=180 | | 3x-6=36+6 | | 126=6(8b-3) | | (3x+2)=-15 | | (2x+9)=(4x-11) | | 274=2-8(6n-4) | | k^2−100k^2=0. | | -8m-24=88 | | -3x=4+7x10x | | 2u+78=9u-48 | | x^2-x=2x^2-3x+35 | | 5x-60=125 | | -81.1=((u/6)+1.1) | | 2m+10=62 | | 0.15x=x-146.54 | | 17(x+20)=1445 | | -1/2u+3/5=1-6 | | 9=1x | | (17x)20=1445 | | 3/4n=2.5 | | 17x(20)=1445 |